Time: 75 minutes

November 9, 1989

- 1. (a) Solve the inequality $\frac{1}{x} \frac{1}{x^2} \le 3$.
 - (b) Sketch and name the graph of the following equation $x^2+3y^2-4x-5=0$.

(10 points

2. Find an equation of the circle in the first quadrant that is tangent to both the x and y axes with centre on the line y+5x-12=0.

(10 points)

3 Suppose that.

$$f(x) = \begin{cases} 4x & , & x < -1 \\ ax + b, & -1 \le x \le 2 \end{cases}$$

Find the values of a and b such that f(x) is continuous: at -1 and at 2.

(10 points)

4. (a) Using the definition of the limit, show that:

$$\lim_{x \to -1} 2x + 5 = 3$$

(b) Evaluate the following limit (if exists)

(15 points)

- 5. Let $f(x) = x^2 + 3x + 4$.
 - (a) Using the definition of the derivative, find f'(1).
 - (b) Find an equation for the tangent line to the graph of f at x = 1.

(15 points)